Hum Cell. 2025 Feb 17;38(2):57. doi: 10.1007/s13577-025-01188-w.
ABSTRACT
Age-related macular degeneration (AMD), the leading cause of irreversible vision loss in the US, is on the rise among the elderly. Uncontrolled mitochondria-derived peptide production from mtDNA disruption and 16S or 12S rRNA damage could worsen AMD. Our previous work has shown that Humanin G possesses cytoprotective effects in retinal pigment epithelial (RPE) cells. However, MOTS-c, a highly efficient mitochondrial peptide, has yet to be evaluated on retinal cell survival. In this study, we show that there are differences in effects between wild-type (wt-) and differentiated ARPE19 cells (diff-ARPE19), implying that the cellular differentiation status may influence how cells respond to MOTS-c. MOTS-c has dose-dependent effects on apoptosis, inflammation, and mitochondrial biogenesis in diff-ARPE19 cells. Lower doses (500 nM) have more significant impacts than 5 µM concentrations. In diff-ARPE19 cells, a lower dose of MOTS-c can reduce the negative impact of hypoxia on cellular survival and gene expression, including apoptosis (CASP3, CASP9), mitochondrial biogenesis (TFAM, PGC-1α), and metabolic sensor (AMPK). However, it had no significant effect on ROS levels or NRF1 expression, regardless of MOTS-c dose. Exposing diff-ARPE19 cells to varied MOTS-c dosages before and after therapy in a chemically induced hypoxic environment yields no extra benefits as compared to MOTS-c treatment alone. MOTS-c had different effects on the expression of genes linked with apoptosis, mitochondrial biogenesis, and antioxidant activity in AMD patients versus age-matched control cybrids. The MOTS-c peptide appears to enhance cellular metabolism and regulate gene expression, which could potentially provide therapeutic benefits in AMD.
PMID:39961901 | DOI:10.1007/s13577-025-01188-w