High-Glucose-Induced Metabolic and Redox Alterations Are Distinctly Modulated by Various Antidiabetic Agents and Interventions Against FABP5/7, MITF and ANGPTL4 in Melanoma A375 Cells

Int J Mol Sci. 2025 Jan 24;26(3):1014. doi: 10.3390/ijms26031014.

ABSTRACT

Hyperglycemia-induced effects on cellular metabolic properties and reactive oxygen species (ROS) generation play pivotal roles in the pathogenesis of malignant melanoma (MM). This study assessed how metabolic states, ROS production, and related gene expression are modulated by antidiabetic agents. The anti-diabetic agents metformin (Met) and imeglimin (Ime), inhibitors of fatty acid-binding proteins 5/7 (MF6) and microphthalmia-associated transcription factor (MITF) (ML329), and siRNA-mediated knockdown of angiopoietin-like protein 4 (ANGPTL4), which affect mitochondrial respiration, ROS production, and related gene expression, were tested in A375 (MM cell line) cells cultured in low (5.5 mM) and high glucose (50 mM) conditions. Cellular metabolic functions were significantly and differently modulated by Met, Ime, MF6, or ML329 and knockdown of ANGPTL4. High glucose significantly enhanced ROS production, which was alleviated by Ime but not by Met. Both MF6 and ML329 reduced ROS levels under both low and high glucose conditions. Knockdown of ANGPTL4 enhanced the change in glucose-dependent ROS production. Gene expression related to mitochondrial respiration and the pathogenesis of MM was significantly modulated by different glucose conditions, antidiabetic agents, MF6, and ML329. These findings suggest that glucose-dependent changes in cellular metabolism and redox status are differently modulated by antidiabetic agents, inhibition of fatty acid-binding proteins or MITF, and ANGPTL4 knockdown in A375 cells.

PMID:39940783 | DOI:10.3390/ijms26031014