Cureus. 2024 Sep 18;16(9):e69651. doi: 10.7759/cureus.69651. eCollection 2024 Sep.
ABSTRACT
Photobiomodulation (PBM), also known as low-level laser therapy, is an emerging therapeutic modality in ophthalmology, attracting increasing interest for its potential to manage a variety of ocular conditions. PBM employs low-energy light within the red and near-infrared spectrum to penetrate biological tissues, where it interacts with cellular chromophores. This interaction is believed to enhance mitochondrial function, boost adenosine triphosphate (ATP) production, and reduce oxidative stress, leading to improved cellular repair and tissue regeneration. Recent bench research has demonstrated PBM’s efficacy in cellular and animal models, showing its ability to modulate inflammatory processes and promote healing in retinal and corneal diseases. For instance, in retinal models, PBM has been observed to reduce apoptosis and support cell survival under stress conditions. Similarly, studies in corneal models suggest that PBM can accelerate wound healing and reduce scarring. Clinical trials further corroborate these findings, revealing that PBM can enhance treatment outcomes in several ocular diseases, including age-related macular degeneration, diabetic retinopathy, and dry eye disease. Patients undergoing PBM have reported improvements in visual acuity, reduced retinal inflammation, and better tear film stability, highlighting its potential as an adjunctive therapy. This review also explores the integration of PBM into clinical practice, discussing current treatment protocols, safety considerations, and the latest advancements in PBM technology. By offering a holistic overview, the review aims to provide clinicians and researchers with valuable insights into PBM’s role in modern ophthalmic care, emphasizing its potential to enhance treatment strategies and improve patient outcomes.
PMID:39429338 | PMC:PMC11488463 | DOI:10.7759/cureus.69651