Hyperglycemia-depleted glutamine contributes to the pathogenesis of diabetic corneal endothelial dysfunction

Exp Eye Res. 2024 Oct 11:110124. doi: 10.1016/j.exer.2024.110124. Online ahead of print.

ABSTRACT

Diabetic mellitus causes various complications, including the corneal endothelial dysfunction (CED) that leads to corneal edema and vision loss, especially in the DM patients with intraocular surgeries. However, the pathogenic mechanism of hyperglycemia-caused CED remains incomplete understood. Here we firstly screened and identified the glutamine contents of anterior humor were significantly reduced in both the type 2 diabetic patients and streptozotocin-induced type 1 diabetic mice. To explore the potential therapeutic effects of glutamine supplement on the protection of diabetic corneal endothelial dysfunction, we performed the anterior chamber perfusion with the addition of L-alanyl-L-glutamine (Ala-Gln), and confirmed that Ala-Gln supplement not only accelerated the resolution of corneal edema and recovery of corneal thickness, but also preserved the regular arrangement and barrier-pomp function of corneal. Mechanistically, we revealed that the supplements of Ala-Gln protect corneal endothelial cells from the deleterious effects of high glucose-induced oxidative stress, mitochondrial dysfunction, and cell apoptosis. Overall, these results indicate the glutamine depletion plays an important role in the diabetic corneal endothelial dysfunction, while the Ala-Gln supplement during intraocular surgery provide an effective prevention strategy through regulating the redox homeostasis and mitochondrial function of corneal endothelial cells.

PMID:39396694 | DOI:10.1016/j.exer.2024.110124