Mitochondrial DNA-Activated cGAS-STING Signaling in Environmental Dry Eye

Invest Ophthalmol Vis Sci. 2024 Apr 1;65(4):33. doi: 10.1167/iovs.65.4.33.


PURPOSE: The cGAS-STING pathway has been shown to be an important mediator of inflammation. There is emerging evidence of the importance of this signaling cascade in a variety of inflammatory diseases settings. Here, we present evidence that the mitochondrial DNA (mtDNA) damage-mediated cGAS-STING pathway plays an important role in the induction of inflammation in environmental dry eye (DE).

METHODS: RT-qPCR and Western blot were used to assess the induction of the cGAS-STING pathway and inflammatory cytokines in environmental DE mouse model, primary human corneal epithelial cells (pHCECs), and patients with DE. RNA sequencing was used to determine mRNA expression patterns of high osmotic pressure (HOP)-stimulated pHCECs. mtDNA was detected with electron microscopy, flow cytometry, and immunofluorescent staining. mtDNA was isolated and transfected into pHCECs for evaluating the activation of the cGAS-STING pathway.

RESULTS: The expression levels of cGAS, STING, TBK1, IRF3, and IFNβ were significantly increased in an environmental DE model and HOP-stimulated pHCECs. The STING inhibitor decreased the expression of inflammatory factors in DE. An upregulation of STING-mediated immune responses and IRF3 expression mediated by TBK1 were observed in the HOP group. HOP stimulation induced mitochondrial oxidative damage and the leakage of mtDNA into the cytoplasm. Then, mtDNA activated the cGAS-STING pathway and induced intracytoplasmic STING translocated to the Golgi apparatus. Finally, we also found activated cGAS-STING signaling in the human conjunctival blot cell of patients with DE.

CONCLUSIONS: Our findings suggest that the cGAS-STING pathway is activated by recognizing cytoplasmic mtDNA leading to STING translocation, further exacerbating the development of inflammation in environmental DE.

PMID:38648040 | DOI:10.1167/iovs.65.4.33