RatioCRISPR: A ratiometric biochip based on CRISPR/Cas12a for automated and multiplexed detection of heteroplasmic SNPs in mitochondrial DNA

Biosens Bioelectron. 2023 Sep 9;241:115676. doi: 10.1016/j.bios.2023.115676. Online ahead of print.


Mitochondrial genetic diseases are often characterized by heteroplasmic single nucleotide polymorphisms (SNPs) where both wild-type (WT) and mutant-type (MT) coexist, making detection of accurate SNP abundance critical for diagnosis. Here, we present RatioCRISPR, an automated ratiometric biochip sensor based on the CRISPR/Cas12a system for detecting multiple heteroplasmic SNPs in mitochondrial DNA (mtDNA). The ratiometric sensor output is only influenced by the relative abundance of WT and MT, with minimal impact from sample concentration. Biochips allow the simultaneous detection of multiple SNP sites for more accurate disease diagnosis. RatioCRISPR can accurately detect 8 samples simultaneously within 25 min with a limit of detection (LOD) of 15.7 aM. We successfully detected 13 simulated samples of three mtDNA point mutations (m.3460G>A, m.11778G>A, and m.14484T>C), which lead to Leber’s hereditary optic neuropathy (LHON) and set a threshold (60%) of heteroplasmy to evaluate disease risk. This automated and accurate biosensor has broad applications in diagnosing multiple SNPs, especially those with heteroplasmic variations, making it an advanced and convenient tool for mtDNA disease diagnosis.

PMID:37714059 | DOI:10.1016/j.bios.2023.115676