Akkermansia muciniphila-Nlrp3 is involved in the neuroprotection of phosphoglycerate mutase 5 deficiency in traumatic brain injury mice

Front Immunol. 2023 May 23;14:1172710. doi: 10.3389/fimmu.2023.1172710. eCollection 2023.

ABSTRACT

INTRODUCTION: Gut-microbiota-brain axis is a potential treatment to decrease the risk of chronic traumatic encephalopathy following traumatic brain injury (TBI). Phosphoglycerate mutase 5 (PGAM5), a mitochondrial serine/threonine protein phosphatase, resides in mitochondrial membrane and regulates mitochondrial homeostasis and metabolism. Mitochondria mediates intestinal barrier and gut microbiome.

OBJECTIVES: This study investigated the association between PGAM5 and gut microbiota in mice with TBI.

METHODS: The controlled cortical impact injury was established in mice with genetically-ablated Pgam5 (Pgam5-/-) or wild type, and WT male mice were treated with fecal microbiota transplantation (FMT) from male Pgam5-/- mice or Akkermansia muciniphila (A. muciniphila). Then the gut microbiota abundance, blood metabolites, neurological function, and nerve injury were detected.

RESULTS: Treated with antibiotics for suppressing gut microbiota in Pgam5-/- mice partially relieved the role of Pgam5 deficiency in the improvement of initial inflammatory factors and motor dysfunction post-TBI. Pgam5 knockout exhibited an increased abundance of A. muciniphila in mice. FMT from male Pgam5-/- mice enabled better maintenance of amino acid metabolism and peripherial environment than that in TBI-vehicle mice, which suppressed neuroinflammation and improved neurological deficits, and A. muciniphila was negatively associated with intestinal mucosal injury and neuroinflammation post-TBI. Moreover, A. muciniphila treatment ameliorated neuroinflammation and nerve injury by regulating Nlrp3 inflammasome activation in cerebral cortex with TBI.

CONCLUSION: Thus, the present study provides evidence that Pgam5 is involved in gut microbiota-mediated neuroinflammation and nerve injury, with A. muciniphila-Nlrp3 contributing to peripheral effects.

PMID:37287985 | PMC:PMC10242175 | DOI:10.3389/fimmu.2023.1172710