Vitamin C protects retinal ganglion cells via SPP1 in glaucoma and after optic nerve damage

Life Sci Alliance. 2023 May 9;6(8):e202301976. doi: 10.26508/lsa.202301976. Print 2023 Aug.

ABSTRACT

Glaucoma is a common neurodegenerative disorder characterized by retinal ganglion cell death, astrocyte reactivity in the optic nerve, and vision loss. Currently, lowering the intraocular pressure (IOP) is the first-line treatment, but adjuvant neuroprotective approaches would be welcome. Vitamin C possesses neuroprotective activities that are thought to be related to its properties as a co-factor of enzymes and its antioxidant effects. Here, we show that vitamin C promotes a neuroprotective phenotype and increases gene expression related to neurotropic factors, phagocytosis, and mitochondrial ATP production. This effect is dependent on the up-regulation of secreted phosphoprotein 1 (SPP1) in reactive astrocytes via the transcription factor E2F1. SPP1+ astrocytes in turn promote retinal ganglion cell survival in a mouse model of glaucoma. In addition, oral administration of vitamin C lowers the IOP in mice. This study identifies an additional neuroprotective pathway for vitamin C and suggests a potential therapeutic role of vitamin C in neurodegenerative diseases such as glaucoma.

PMID:37160307 | DOI:10.26508/lsa.202301976