Deep Brain Stimulation for Medication Refractory Tremor in Leber Optic Neuropathy Plus Syndrome

Leber hereditary optic neuropathy (LHON) is a mitochondrial disorder that presents with acute to subacute onset of unilateral progressive optic neuropathy, with sequential involvement of the fellow eye months to years later. The condition may be accompanied by neurological symptoms, including tremors, dystonia, seizures, or psychosis, in which case, it is termed LHON-plus. Here, we present the case of a 53-year-old man who was initially diagnosed with essential tremor but was later found to have…

Deep Learning for Cell Migration in Nonwoven Materials and Evaluating Gene Transfer Effects following AAV6-ND4 Transduction

Studying cell settlement in the three-dimensional structure of synthetic biomaterials over time is of great interest in research and clinical translation for the development of artificial tissues and organs. Tracking cells as physical objects improves our understanding of the processes of migration, homing, and cell division during colonisation of the artificial environment. In this study, the 3D environment had a direct effect on the behaviour of biological objects. Recently, deep…

Autosomal recessive leber hereditary optic neuropathy in a choroideremia carrier. A case report

CONCLUSIONS: In children with acute or subacute, simultaneous, or sequential vision loss that is unresponsive to immunomodulatory treatment, LHON should be considered as a possible diagnosis. Our case emphasizes the diagnostic advantage of sequencing DNAJC30 in parallel with the mitochondrial DNA, especially in Eastern European descent patients. Genomic rearrangement testing should be considered for patients with a CHM carrier phenotype who have negative results on sequencing tests.

Galactose-Replacement Unmasks the Biochemical Consequences of the G11778A Mitochondrial DNA Mutation of LHON in Patient-Derived Fibroblasts

Leber’s hereditary optic neuropathy (LHON) is a visual impairment associated with mutations of mitochondrial genes encoding elements of the electron transport chain. While much is known about the genetics of LHON, the cellular pathophysiology leading to retinal ganglion cell degeneration and subsequent vision loss is poorly understood. The impacts of the G11778A mutation of LHON on bioenergetics, redox balance and cell proliferation were examined in patient-derived fibroblasts. Replacement of…

Leber’s hereditary optic neuropathy

Leber’s hereditary optic atrophy (LHON) is a genetic optic neuropathy that is more prevalent in young males but can occur from childhood to old age. The primary cause is mitochondrial genetic mutations, which are associated with dysfunction of mitochondrial electron transport chain complex I. It manifests as acute to subacute visual impairment, often starting unilaterally but progressing to involve both eyes within weeks to months. Visual loss is severe, with many patients having corrected…

A challenging differential diagnosis – Leber’s Hereditary Optic Neuropathy

Leber’s hereditary optic neuropathy (LHON) is the most common maternally inherited disease linked to mitochondrial DNA (mtDNA). The patients present with subacute asymmetric bilateral vision loss. Approximately 95% of the LHON cases are caused by m.3460G>A (MTND1), m.11778G>A (MTND4), and m.14484T>C (MTND6) mutations. The hallmark of hereditary optic neuropathies determined by mitochondrial dysfunction is the vulnerability and degeneration of retinal ganglion cells (RGC). We present the case of…

Mitochondrial complex I subunit MT-ND1 mutations affect disease progression

Mitochondrial respiratory chain complex I is an important component of the oxidative respiratory chain, with the mitochondrially encoded NADH:ubiquinone oxidoreductase core subunit 1 (MT-ND1) being one of the core subunits. MT-ND1 plays a role in the assembly of complex I and its enzymatic function. MT-ND1 gene mutation affects pathophysiological processes, such as interfering with the early assembly of complex I, affecting the ubiquinone binding domain and proton channel of complex I, and…